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Abstract— The high dimensional feature vectors of microarray 
impose a high dimensional cost as well as the risk of overfitting 
during classification. Thus it is necessary to reduce the dimension 
through ways like feature selection. 
In this paper, we make the people aware of the various 
techniques of feature selection. 
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I. INTRODUCTION 

The DNA microarray [1] technology is providing great 
opportunities in reshaping the biomedical science. A 
systematic and computational analysis of microarray datasets 
is an interesting way to study and understand many aspects of 
underlying biological process. Parallel to these technological 
advances has been the development of machine learning 
methods to analyse and understand the data generated by this 
new kind of experiments. The analysis involves class 
prediction (supervised classification), regression, feature 
selection, principal component analysis, outlier detection, 
discovering of gene relationships and cluster analysis 
(unsupervised classification) [1,3]. 

Feature selection can be applied to both supervised and 
unsupervised learning; we focus here on the problem of 
supervised learning (classification), where the class labels are 
known beforehand. 

A DNA microarray is a multiplex technology which is 
being used in molecular biology which consists of an arrayed 
series of thousands of spots of DNA which are called features. 
Microarray technology is used to study the expression of 
many genes at a time. The high dimensional [2,5] feature 
vectors of microarray data often impose a high computational 
cost as well as the risk of “overfitting” at the time of 
classification. Thus it is necessary to reduce the 
dimensionality through ways like feature selection. 

A microarray chip or data can be analyzed as shown in 
figure 1.First the microarray dataset is normalized so that 
there are no missing values and the data is scaled between a 
specific range. Then feature selection is done as a result of 
which we get the key genes. Then the classification or 

clustering is done and the output is interpreted to get the 
required biological information 

 
 
 

 

Fig.1 Microarray chip analysis 

The selection of relevant features and elimination of irrelevant 
ones is a great problem. Before an induction algorithm can be 
applied to a training dataset to make decisions about test 
cases, it must decide about which attributes to be selected and 
which to be ignored. 
Irrelevant features increase the measurement cost, decrease 
the classification accuracy and add to making the computation 
complex. Obviously, one would like to use only those 
attributed that are relevant to the target concept. 
The rest of the paper is organized as follows: a brief review of 
the existing techniques of feature selection, classifiers used 
and microarray datasets used in section II, comparative results 
in section III followed by conclusion and future direction. 
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II. REVIEW OF EXISTING TECHNIQUES 

Feature selection (also known as subset selection) is a 
process commonly used in machine learning [7], where a 
subset of features is selected from the available data for 
application of a learning algorithm. The best subset contains 
the least number of features that most contribute towards 
accuracy [7,8]. 

 

A. Feature Selection 

Feature selection [1,3,10] (also known as subset selection) 
is a process commonly used in machine learning, where a 
subset of features is selected from the available data for 
application of a learning algorithm[5]. The best subset 
contains the least number of features that most contribute 
towards accuracy. 
There are two approaches of feature selection [10]: 
Forward selection: 

• Start with no variables. 

• Add the variables one by one, at each step adding the feature 
that has the least error. 

• Repeat the above step until any further addition does not 
signify any decrease in error. 

Backward selection: 
• Start with all variables. 

• Remove the variables one by one, at each step removing the 
feature that has the highest error.  

• Repeat the above step until any further  removal increases the 
error significantly 

Two broad categories of feature subset selection have been 
proposed: filter and wrapper [4,5]. In filter criteria, all the 
features are scored and ranked based on certain statistical 
criteria. The features with the highest ranking values are 
selected. Filter methods (fig 2) are fast and independent of the 
classifier but ignore the feature dependencies and also ignores 
the interaction with the classifier. In addition, it is not clear 
how to determine the threshold point for rankings to select 
only the required features and exclude noise. 

 
 
 
 
 
 

Fig.2  The feature filter approach 

 
 
In the wrapper approach (fig. 3), feature selection is 

“wrapped “ in a learning algorithm. The learning algorithm is 
then applied to subsets of features and prediction accuracy is 
used to find the feature subset quality. Wrapper methods 
employ a search algorithm to search for an optimal subset of 
features. Wrapper approach is simple, interacts with the 

classifier and models feature dependencies. Wrapper methods 
employ more computational cost. However as far as final 
classification accuracy is concerned, wrappers provide better 
results. 

 

 

Fig.3 The feature Wrapper approach 

Feature subset selection can be seen as a search process 
through the space of feature subsets. Some questions to be 
answered in terms of search process [3,4] are: 

1. Where to start the search? The search point decides the 
direction of search. Search can be done either by forward 
selection or backward selection. 

2. How to evaluate subsets or features? There exists two 
strategies for evaluating and they are filter and wrapper 
approach. 

3. How to search? With m genes there exist 2m feature subsets. 
Heuristic search strategies like greedy and hill climbing 
strategies are applied.  

4. When to stop searching? The addition or removal of features 
should be stopped based on threshold criteria. 

Thus feature selection [4,6] is of considerable importance in 
classification as it : 

a) Reduces the effects of curse of dimensionality 
b) Helps in learning the model 
c) Minimizes cost of computation 
d) Helps in achieving good accuracy 

 

B.     Classifiers Used 

 
The classifiers used can broadly be classified as: Support 
vector based classification methods and Non support vector 
based classification methods [2,3]. 
 

1) Support Vector Machine based classification methods: 
Support vector machines (SVMs) (Vapnik, 1998) are perhaps 
the single most important development in supervised 
classification of recent years. SVMs often achieve superior 
classification performance compared to other learning 
algorithms across most domains and tasks; they are fairly 
insensitive to the curse of dimensionality and are efficient 
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enough to handle very large-scale classification in both sample and variables. In clinical bioinformatics, they have
allowed the construction of influential experimental cancer 
diagnostic models based on gene expression data with 
thousands of variables and as little as few dozen samples. 
Moreover, several efficient and highquality implementations 
of SVM algorithms (e.g. Joachims, 1999; Chang and Lin, 
2003, http://www.csie.ntu.edu.tw/∼cjlin/libsvm) facilitate 
application of these techniques in practice. The first 
generation of SVMs were limited to binary classification tasks. 
But, most real-life diagnostic tasks are not binary. Moreover, 
all other things being equal, multicategory classification is 
significantly harder than binary classification. Fortunately, 
several algorithms have emerged during the last few years that 
allow multicategory classification with SVMs. The 
preliminary experimental evidence currently available 
suggests that some multicategory[2].  
Binary SVMs: The main idea of binary SVMs [6] is to 
implicitly map data to a higher dimensional space via a kernel 
function and then solve an optimization problem to identify 
the maximum-margin hyperplane that separates training 
instances. The hyperplane is based on a set of boundary 
training instances, called support vectors [7]. New instances 
are classified according to the side of the hyperplane[2] they 
fall into. The optimization problem is most often formulated 
in a way that allows for non-separable data by penalizing 
misclassifications 

 Multiclass SVMs: one-versus-rest (OVR) This is conceptually 
the simplest multiclass SVM method. Here, k binary SVM 
classifiers are constructed: class 1 (positive) versus all other 
classes (negative), class 2 versus all other classes, . . ., class k 
versus all other classes. The combined OVR [2] decision 
function chooses the class of a sample that corresponds to the 
maximum value of k binary decision functions specified by 
the furthest ‘positive’ hyperplane. By doing so, the decision 
hyperplanes calculated by k SVMs ‘shift’, which questions the 
optimality of the multicategory classification. This approach is 
computationally costly, since we need to solve k quadratic 
programming (QP) optimization problems of size n. Moreover, 
this technique does not currently have theoretical justification 
such as the analysis of generalization, which is a relevant 
property of a robust learning algorithm 
Multiclass SVMs: one-versus-one (OVO) This method 
involves the construction of binary SVM [2] classifiers for all 
pairs of classes; in total there are _k2 _ = [k(k − 1)]/2 pairs .  
other words, for every pair of classes, a binary SVM problem 
is solved (with the underlying optimization problem to 
maximize the margin between two classes). The decision 
function assigns an instance to a class that has the largest 
number of votes, so-called Max Wins strategy. If ties still 
occur, each sample will be assigned a label based on the 
classification provided by the furthest hyperplane.  

One of the benefits of this approach is that for every 
pair of classes we deal with a much smaller optimization 
problem, and in total we need to solve k(k − 1)/2 QP problems 
of size smaller than n. Given that QP optimization algorithms 
used for SVMs are polynomial to the problem size, such a 
reduction can yield substantial savings in the total 

computational time. Moreover, some researchers postulate 
that even if the entire multicategory problem is non-separable, 
while some of the binary subproblems are separable, then 
OVO can lead to the improvement of classification compared 
with OVR. Unlike the OVR approach, here tie-breaking plays 
only a minor role and does not affect the decision boundaries 
significantly. On the other hand, similar to OVR, OVO does 
not currently have established bounds on the generalization 
error 
Multiclass SVMs: DAGSVM The training phase of this 
algorithm is similar to the OVO approach using multiple 
binary SVM classifiers; however, the testing phase of 
DAGSVM requires the construction of a rooted binary 
decision directed acyclic graph (DDAG) using _k2_ classifiers. 
Each node of this graph is a binary SVM for a pair of classes, 
say (p, q). On the topologically lowest level there are k leaves 
corresponding to k classification decisions. Every non-leaf 
node (p, q) has two edges—the left edge corresponds to 
decision ‘not p’ and the right one corresponds to ‘not q’. The 
choice of the class order in the DDAG list can be arbitrary as 
shown empirically in Platt et al. (2000). In addition to 
inherited advantages from the OVO method, DAGSVM is 
characterized by a bound on the generalization error. 
Multiclass SVMs: method by Weston and Watkins 
This approach to multiclass SVMs can be viewed as a natural 
extension of the binary SVM classification problem. Here, in 
the k-class case one has to solve a single quadratic 
optimization problem of size (k − 1)n which is identical to 
binary SVMs for the case k = 2. In a slightly different 
formulation of QP problem, a bounded formulation, 
decomposition techniques can provide a significant speed-up 
in the solution of the optimization problem. This method does 
not have an established bound on the generalization error, and 
its optimality is not currently proved. 
Multiclass SVMs: method by Crammer and Singer 
This technique requires the solution of a single QP problem of 
size (k − 1)n, however uses less slack variables in the 
constraints of the optimization problem, and hence it is 
cheaper computationally. The use of decompositions can 
provide a significant speed-up in the solution of the 
optimization problem. Unfortunately, the optimality of CS, as 
well as the bounds on generalization has not yet been 
demonstrated. 
 
Non-Support vector machine based classification methods: 
In addition to five MC-SVM [2] methods, three popular 
classifiers, K-nearest neighbors (KNNs), backpropagation 
neural networks (NNs) and probabilistic neural networks 
(PNNs), are also used. These learning methods have been 
extensively and successfully applied to gene expression-based 
cancer diagnosis [2]. 
K-nearest neighbours: The main idea of KNN is that it treats 
all the samples as points in the m-dimensional space (where m 
is the number of variables) and given an unseen sample x, the 
algorithm classifies it by a vote of K-nearest training instances 
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as determined by some distance metric, typically Euclidean 
distance. 
Backpropagation neural networks: NNs are feed-forward 
neural networks with signals propagated only forward through 
the layers of units. These networks are comprised of (1) an 
input layer of units, which we feed with gene expression data; 
(2) hidden layer(s) of units; and (3) an output layer of units, 
one for each diagnostic category, so-called 1-of-n encoding. 
The connections among units have weights and are adjusted 
during the training phase (epochs of a neural network) by 
backpropagation learning algorithm. This algorithm adjusts 
weights by propagating the error between network outputs and 
true diagnoses backward through the network and employs 
gradient descent optimization to minimize the error function. 
This process is repeated until a vector is found of weights that 
best fits the training data. When training of a neural network is 
complete, unseen data instances are fed to the input units, 
propagated forward through the network and the network 
outputs classifications 
Probabilistic neural networks: PNNs [2] belong to the family 
of Radial Basis Function (RBF) neural networks. RBF 
networks are feed-forward neural networks with only one 
hidden layer. The primary difference between an NN with one 
hidden layer and an RBF network is that for the latter one, the 
inputs are passed directly to the hidden layer without weights. 
The Gaussian density function is used in a hidden layer as an 
activation function. The weights for the connections among 
the hidden and the output layer are optimized via a least 
squares optimization algorithm. A key advantage of RBF 
networks is that they are trained much more efficiently than 
NNs. 
PNNs are made up of (1) an input layer; (2) a hidden layer 
consisting of a pattern layer and a competitive layer; and (3) 
an output layer. The pattern layer contains one unit for each 
sample in the training dataset. Given an unseen training 
sample x, each unit in the pattern layer computes a distance 
from x to a specific training instance and applies a Gaussian 
density activation function. The competitive layer contains 
one unit for each diagnostic category, and these units receive 
inputs only from pattern units that are associated with the 
category to which the training instance belongs. Each unit in 
the competitive layer sums over the outputs of the pattern 
layer and computes a probability of x belonging to a specific 
diagnostic category. Finally, the output unit corresponding to 
a maximum of these probabilities outputs 1, while those 
remaining output 0. 

C    Datasets Used 

In total there are 9 public datasets [11]. All the 9 datasets can 
be found at http://datam.i2r.astar.edu.sg/datasets/krbd/ which 
is the  online repository of high-dimensional biomedical data 
sets, including gene expression data, protein profiling data and 
genomic sequence data that are related to classification and 
that are published recently in Science, Nature and so on 
prestigious journals[10]. These biomedical applications are 
also challenging problems to the machine learning and data 
mining community. As the file formats of these original raw 

data are different from common ones used in most of machine 
learning softwares, they have been transformed into the 
standard .data and .names format and stored them in 
repository.  

Breast Cancer: Patients outcome prediction for breast cancer. 
The training data contains 78 patient samples, 34 of which are 
from patients who had developed distance metastases within 5 
years (labelled as "relapse"), the rest 44 samples are from 
patients who remained healthy from the disease after their 
initial diagnosis for interval of at least 5 years (labelled as 
"non-relapse"). Correspondingly, there are 12 relapse and 7 
non-relapse samples in the testing data set. The number of 
genes is 24481."NaN" symbol in original ratio data had been 
replaced with 100.0. 

Central Nervous System: Patients outcome prediction for 
central nervous system embryonal tumor. Survivors are 
patients who are alive after treatment whiles the failures are 
those who succumbed to their disease. The data set contains 
60 patient samples, 21 are survivors (labelled as "Class1") and 
39 are failures (labelled as "Class0"). There are 7129 genes in 
the dataset.  

Colon Tumor : Contains 62 samples collected from colon-
cancer patients. Among them, 40 tumor biopsies are from 
tumors (labelled as "negative") and 22 normal (labelled as 
"positive") biopsies are from healthy parts of the colons of the 
same patients. Two thousand out of around 6500 genes were 
selected based on the confidence in the measured expression 
levels. 

Diffuse Large B-Cell Lymphoma (DLBCL):  

DLBCL-Stanford : Distinct types of diffuse large B-cell 
lymphoma (DLBCL) using gene expression data. There are 47 
samples, 24 of them are from "germinal centre B-like" group 
while 23 are "activated B-like" group. Each sample has been 
described by 4026 genes 

DLBCL-Harvard: There are two kinds of classifications about 
diffuse large b-cell lymphoma (DLBCL) addressed in the 
publication. First one is DLBCL versus Follicular Lymphoma 
(FL) morphology. This set of data contains 58 DLBCL 
samples and 19 FL samples. The second problem is to predict 
the patient outcome of DLBCL. Among 58 DLBCL patient 
samples, 32 of them are from cured patients (labelled as 
'cured') while 26 of them are from patients with fatal or 
refractory disease (labelled as 'fatal'). The expression profile 
contains 6817 genes  

DLBCL-NIH: Biopsy samples of diffuse large-B-cell 
lymphoma from 240 patients were examined for gene 
expression with the use of DNA micro arrays and analyzed for 
genomic abnormalities. The 240 samples has been divided 
into two groups: a preliminary group (training) of 160 patients 
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and a validation group (testing) of 80 patients. Number of 
microarray features is 7399.Leukemia  

Leukemia-ALLAML (WhiteHead, MIT): Training dataset 
consists of 38 bone marrow samples (27 ALL and 11 AML), 
over 7129 probes from 6817 human genes. Also 34 samples 
testing data has been provided, with 20 ALL and 14 AML  

Leukemia-MLL (WhiteHead, MIT): Training data contains 57 
leukemia samples (20 ALL, 17 MLL and 20 AML). Testing 
data contains 4 ALL, 3 MLL and 8 AML samples. 
 

Leukemia-subtype (Stjude): This study is about classifying 
subtypes of pediatric acute lymphoblastic leukemia. The data 
has been divided into six diagnostic groups (BCR-ABL, E2A-
PBX1, Hyperdiploid>50, MLL, T-ALL and TEL-AML1), and 
one that contains diagnostic samples that did not fit into any 
one of the above groups (labelled as "Others"). There are 
12558 genes. According to the above publication, each group 
of samples has been randomized into training and testing 
parts. The number of training and testing samples in each 
group is listed in the table below. 

Group (Class) 
Number of Training

Samples 

Number of Testing

Samples 

BCR-ABL 9 6 

E2A-PBX1 18 9 

Hyperdiploid>5042 22 

MLL 14 6 

T-ALL 28 15 

TEL-AML1 52 27 

Others 52 27 

Lung Cancer  

LungCancer-DanaFarberCancerInstitute-
HarvardMedicalSchool : A total of 203 snap-frozen lung 
tumors and normal lung were analysized. The 203 speciments 
include 139 samples of lung adenocarcinomas (labelled as 
ADEN), 21 samples of squamous cell lung carcinomas 
(labelled as SQUA), 20 samples of pulmonary carcinoids 
(labelled as COID), 6 samples of small-cell lung carcinomas 
(labelled as SCLC) and 17 normal lung samples (labelled as 
NORMAL). Each sample has been described by 12600 genes. 

LungCancer-BrighamAndWomenHospital-
HarvardMedicalSchool : Classification between malignant 
pleural mesothelioma (MPM) and adenocarcinoma (ADCA) 
of the lung. There are 181 tissue samples (31 MPM and 150 

ADCA).  The training set contains 32 of them, 16 MPM and 
16 ADCA. The rest 149 samples are used for testing. Each 
sample has been described by 12533 genes. 

LungCancer-Michigan: 86 primary lung adenocarcinomas 
samples and 10 non-neoplastic lung samples are included. 
Each sample has been described by 7129 genes  

LungCancer-Ontario: Gene expression data on tumor 
specimens from a total of 39 NSCLC samples. Among these 
samples, 24 patients had experienced relapse of their tumor 
either locally or as a distant metastasis (labelled as "relapse"). 
The remaining 15 patients are disease-free based on both 
clinical and radiological testing (labelled as "non-relapse"). 
The processed data has been described by 2880 genes  

Ovarian Cancer  

OvarianCancer-NCI-PBSII-061902: The goal of this 
experiment is to identify proteomic patterns in serum that 
distinguish ovarian cancer from non-cancer. This study is 
significant to women who have a high risk of ovarian cancer 
due to family or personal history of cancer. The proteomic 
spectra were generated by mass spectroscopy and the data set 
provided here is 6-19-02, which includes 91 controls (Normal) 
and 162 ovarian cancers. The raw spectral data of each sample 
contains the relative amplitude of the intensity at each 
molecular mass / charge (M/Z) identity. There are total 15154 
M/Z identities. The intensity values were normalized 
according to the formula: NV = (V-Min)/(Max-Min), where 
NV is the normalized value, V the raw value, Min the 
minimum intensity and Max the maximum intensity. The 
normalization is done over all the 253 samples for all 15154 
M/Z identities. After the normalization, each intensity value is 
to fall within the range of 0 to 1. 

OvarianCancer-NCI-QStar : The goal of this experiment is to 
identify proteomic patterns in serum that distinguish ovarian 
cancer from non-cancer. This study is significant to women 
who have a high risk of ovarian cancer due to family or 
personal history of cancer. Compared with PBSII proteomic 
data, the data obtained from ABI Hybrid Pulsar QqTOF 
instrument (Q-Star) were generated from a higher resolution 
mass spectrometer. The data provided here contains 216 
samples, 121 cancer samples and 95 normal samples. The 
number of attributes is as many as 373,401. Thus, data was to 
split into 10 files, each of them has around 37340 attributes. 

Prostate Cancer: (A) Tumor versus Normal classification: 
training set (from (1)) contains 52 prostate tumor samples and 
50 non-tumor (labelled as "Normal") prostate samples with 
around 12600 genes. An independent set of testing samples 
from (2) is also prepared, which is from a different experiment 
and has a nearly 10-fold difference in overall microarray 
intensity from the training data. Besides, extra genes 
contained in the testing samples have been removed. Thus, 
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there are 25 tumor and 9 normal samples. 
(B) Prediction of clinical outcome: in this data set, 21 patients 
were evaluable with respect to recurrence following surgery 
with 8 patients having relapsed and 13 patients having 
remained relapse free ("non-relapse") for at least 4 years.  

Genomic Sequences :  

Translation Initiation Site Prediction: This data set is 
converted from sequence data. The original data consists of a 
selected set of vertebrates genomic sequences extracted from 
GenBank. It is used to find the Translation Initiation Site 
(TIS), at which the translation from mRNA to proteins 
initiates. Since only those sequences with an annotated TIS  
are included in the data set, a classification model can be built 
to distinguish true (positive) TIS and false (negative) TIS. As 
the data set is processed DNA, the TIS site is ATG. In total, 
there are 3312 sequences (i.e. 3312 true ATGs). There are 
various ways to extract sequences and build feature space.  

Polyadenylation Signal Prediction: This data set is converted 
from sequence data and aims to predict the polyadenylation 
signals (PAS) in human seuquences. The original data was 
first used in Sequence Determinants in Human 
Polyadenylation Site Selection, BMC Genomics, 4(1):7, 2003. 
The data set contains one group of training data (2327 true 
PAS) and 5 groups of testing data, each of them consists of 
982 samples. Among these 5 sets of testing data, one is true 
PAS and the other four are all false PAS. There are total 168 
features 

 

III. RESULTS 

In the last few years the use of wrapper methods has 
increased a lot in the field of classification. In most of the 
wrapper methods support vector machine has been used as 
compared to other classifiers because of its classification 
accuracy. 

The frequency of use of wrapper approach for last few 
years has been shown in fig.5 and the frequency of use of 
support vector machine and K nearest neighbour and neural 
network has been studied and shown in fig.4 

 

 

Fig.4 frequency of use of SVM, K-NN, Neural Network 

 

 
Fig.5 frequency of use of feature wrapper approach 

 

IV. CONCLUSIONS  

We have shown in this paper that feature selection 
algorithms, namely wrappers are very useful in extracting 
useful information in microarray data analysis. Wrapper 
approaches can choose the best genes for building classifiers. 
This is the reason for the increased use of wrapper method in 
last few years. 

Amongst the datasets, colon, cancer and leukemia are the 
most widely used datasets. 

Amongst the classifiers, we conclude that support vector 
machines are widely used because it can achieve superior 
classification performance compared to other learning 
algorithms across most domains and tasks; they are fairly 
insensitive to the curse of dimensionality and are efficient 
enough to handle very large-scale classification in both 
sample and variables. 
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